Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612793

RESUMEN

The evolution of regulatory perspectives regarding the health and nutritional properties of industrial hemp-based products (Cannabis sativa L.) has pushed research to focus on the development of new methods for both the extraction and formulation of the bioactive compounds present in hemp extracts. While the psychoactive and medicinal properties of hemp-derived cannabinoid extracts are well known, much less has been investigated on the functional and antimicrobial properties of hemp extracts. Within the hemp value chain, various agricultural wastes and by-products are generated. These materials can be valorised through eco-innovations, ultimately promoting sustainable economic development. In this study, we explored the use of waste from industrial light cannabis production for the extraction of bioactive compounds without the addition of chemicals. The five extracts obtained were tested for their antimicrobial activity on both planktonic and sessile cells of pathogenic strains of the Candida albicans, Candida parapsilosis, and Candida tropicalis species and for their antioxidant activity on HT-29 colon cancer cells under oxidative stress. Our results demonstrated that these extracts display interesting properties both as antioxidants and in hindering the development of fungal biofilm, paving the way for further investigations into the sustainable valorisation of hemp waste for different biomedical applications.


Asunto(s)
Antiinfecciosos , Cannabis , Neoplasias del Colon , Candida , Antioxidantes/farmacología , Adherencias Tisulares , Biopelículas , Residuos Industriales
2.
Foods ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38540825

RESUMEN

Edible plant and fruit-derived nanovesicles (NVs) are membrane-enclosed particles with round-shape morphology and signaling functions, which resemble mammalian cell-derived extracellular vesicles. These NVs can transmit cross-kingdom signals as they contain bioactive molecules and exert biological effects on mammalian cells. Their properties and stability in the gastrointestinal tract suggest NVs as a promising nutraceutical tool. In this study, we have demonstrated for the first time the presence of NVs in olive vegetation water (OVW), a waste by-product generated during olive oil production. Biophysical characterization by scanning electron microscopy, cryo-transmission electron microscopy, and nanoparticle tracking analysis revealed the presence in OVW of NVs having size and morphology similar to that of vesicles isolated from edible plants. Integrated lipidomic, metabolomic, and proteomic analyses showed that OVW-NVs carry a set of lipids, metabolites and proteins which have recognized antioxidant and anti-inflammatory activities. The nature of biomolecules identified in OVW-NVs suggests that these vesicles could exert beneficial effects on mammalian cells and could be used in the nutraceutical and food industries. The successful isolation of OVW-NVs and the characterization of their features strengthen the idea that agricultural waste might represent a source of NVs having features similar to NVs isolated from edible plants/fruits.

3.
Animals (Basel) ; 13(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37370455

RESUMEN

The pet food market is constantly expanding, and more and more attention is paid to the feeding of pets. Dry foods stand out and are often preferred due to their long shelf life, ease of administration, and low cost. In this context, dry foods are formulated from fresh meats, meat meals, or a mix of the two. These raw materials are often meat not fit for human consumption; they might be subject to contamination and proliferation of microorganisms which, by degrading the organic component, can lead to the formation of undesirable by-products such as biogenic amines. These nitrogenous compounds obtained by decarboxylation of amino acids can therefore be found in high-protein foods, and their ingestion in large quantities can cause intoxication and be harmful. This study aims at analyzing the possible presence of biogenic amines in three different formulations of chicken-based kibbles for pets: one obtained from fresh meat, one from meat meal, and one from a mix of the two. This study is also focused on the presence of free amino acids as they represent the key substrate for decarboxylating enzymes. Mass spectrometry (Q-TOF LC/MS) was used to analyze the presence of biogenic amines and free amino acids. The results show that fresh-meat-based products have a lower content of biogenic amines, and at the same time a higher quantity of free amino acids; on the contrary, meat-meal- and mix-based products have a greater quantity of biogenic amines and a lower concentration of free amino acids, suggesting that there has been a higher microbial proliferation as proved by the total aerobic mesophilic bacteria counts. It is therefore clear that fresh-meat-based kibbles are to be preferred when they are used for preparing dry pet food due to the lowest concentration of biogenic amines.

4.
Environ Res ; 229: 115891, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059323

RESUMEN

Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.


Asunto(s)
Microbiota , Microplásticos , Plásticos , Suelo , Dióxido de Carbono , Microbiología del Suelo , Bacterias/genética
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902248

RESUMEN

Fluorescence imaging is constantly searching for new far-red emitting probes whose turn-on response is selective upon the interaction with specific biological targets. Cationic push-pull dyes could indeed respond to these requirements due to their intramolecular charge transfer (ICT) character, by which their optical properties can be tuned, and their ability to interact strongly with nucleic acids. Starting from the intriguing results recently achieved with some push-pull dimethylamino-phenyl dyes, two isomers obtained by switching the cationic electron acceptor head (either a methylpyridinium or a methylquinolinium) from the ortho to the para position have been scrutinized for their ICT dynamics, their affinity towards DNA and RNA, and in vitro behavior. By exploiting the marked fluorescence enhancement observed upon complexation with polynucleotides, fluorimetric titrations were employed to evaluate the dyes' ability as efficient DNA/RNA binders. The studied compounds exhibited in vitro RNA-selectivity by localizing in the RNA-rich nucleoli and within the mitochondria, as demonstrated by fluorescence microscopy. The para-quinolinium derivative showed some modest antiproliferative effect on two tumor cell lines as well as improved properties as an RNA-selective far-red probe in terms of both turn-on response (100-fold fluorescence enhancement) and localized staining ability, attracting interest as a potential theranostic agent.


Asunto(s)
Ácidos Nucleicos , ARN , Colorantes Fluorescentes/metabolismo , ADN , Microscopía Fluorescente
6.
J Phys Chem B ; 127(6): 1385-1398, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36735941

RESUMEN

In this study, we report a comprehensive time-resolved spectroscopic investigation of the excited-state deactivation mechanism in three push-pull isomers characterized by a phenothiazine electron donor, a benzothiazole electron acceptor, and a phenyl π-bridge where the connection is realized at the relative ortho, meta, and para positions. Spin-orbit charge-transfer-induced intersystem crossing takes place with high yield in these all-organic donor-acceptor compounds, leading also to efficient production of singlet oxygen. Our spectroscopic results give clear evidence of room-temperature phosphorescence not only in solid-state host-guest matrices but also in highly biocompatible aggregates of these isomers produced in water dispersions, as rarely reported in the literature. Moreover, aggregates of the isomers could be internalized by lung cancer and melanoma cells and display bright luminescence without any dark cytotoxic effect. On the other hand, the isomers showed significant cellular phototoxicity against the tumor cells due to light-induced reactive oxygen species generation. Our findings strongly suggest that nanoaggregates of the investigated isomers are promising candidates for imaging-guided photodynamic therapy.


Asunto(s)
Luminiscencia , Fenotiazinas , Temperatura , Isomerismo
7.
J Funct Biomater ; 13(4)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36547530

RESUMEN

Enzymatic biofuel cells (EBCs) represent a promising technology for biosensors, biodevices, and sustainable green energy applications, thanks to enzymes' high specificity and catalytic efficiency. Nevertheless, drawbacks such as limited output power and short lifetime have to be solved. Nowadays, research is addressed to the use of 3D electrode structures, but the high cost and the industrialization difficulties of such electrodes represent a key issue. The purpose of the paper is thus to describe the use of a low-cost commercial conductive polymer (Sigracell® PV15) as support for the covalent immobilization of glucose oxidase and laccase, for bioanode and biocathode fabrication, respectively. Efficient immobilization protocols were determined for the immobilized enzymes in terms of employed linkers and enzyme concentrations, resulting in significant enzymatic activities for units of area. The analysis focuses specifically on the optimization of the challenging immobilization of laccase and assessing its stability over time. In particular, an optimum activity of 23 mU/cm2 was found by immobilizing 0.18 mg/cm2 of laccase, allowing better performances, as for voltage output and electrochemical stability, and a direct electron transfer mechanism to be revealed for the fabricated biocathode. This study thus poses the basis for the viable development of low-cost functional EBC devices for biomedical applications.

8.
J Funct Biomater ; 13(3)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36135560

RESUMEN

Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.

9.
Animals (Basel) ; 12(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35739874

RESUMEN

Dry pet food, made of fresh meats and especially meat meals, represents one of the main types of complete food available on the market by virtue of its practicality and long shelf life. The kibble production process includes mixed thermal and mechanical treatments that help to improve the palatability and durability of the final product but may have undesirable effects on nutrient bioavailability and digestibility. An analysis of the protein and lipid content of different dry pet food formulations, together with an in vitro digestibility analysis, can reveal which formulation can provide a more nourishing diet for pets. In this study, a quantitative and qualitative analysis was performed on three different formulations of chicken-based dry pet food, consisting of fresh meats, meat meals, or a mix of these two. The soluble protein concentration was determined by the Bradford assay, while the crude protein content was assessed through the Kjeldahl method. Quadrupole time-of-flight liquid chromatography/mass spectrometry (Q-TOF LC/MS) was used to analyze the amino acid (AA) and lipid compositions. Finally, a gastric and small intestinal digestion simulation was used to determine the in vitro digestibility. The results show that dry pet food consisting only of chicken fresh meats has the highest content of soluble protein; it also contains more Essential AAs, Branched-Chain AAs, and Taurine, as well as a greater quantity of monounsaturated and polyunsaturated fatty acids. In addition, its in vitro digestibility was the highest, exceeding 90% of its dry weight, in agreement with the soluble protein content. These findings thus make the fresh-meat-based formulation a preferable choice as dry pet food.

10.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744843

RESUMEN

Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already proved to exhibit high water-solubility and significant red fluorescence in water, were investigated through spectrofluorimetric titrations to assess the extent of their association constants with DNA and RNA. Femtosecond-resolved transient absorption spectroscopy was also employed to characterize the changes in the photophysical properties of these fluorophores upon interaction with their biological targets. Finally, in vitro experiments conducted on tumor cell lines revealed that some of the bicationic fluorophores had a peculiar localization within cell nuclei exerting important antiproliferative effects, others were instead found to localize in the cytoplasm without leading to cell death, being useful to mark specific organelles in light of live cell bioimaging. Interestingly, this molecule-dependent behavior matched the different amphiphilicity featured by these bioactive compounds, which are thus expected to be caught in a tug-of-war between lipophilicity, ensured by the presence of aromatic rings and needed to pass cell membranes, and hydrophilicity, granted by charged groups and necessary for stability in aqueous media.


Asunto(s)
Antineoplásicos , Colorantes Fluorescentes , Antineoplásicos/farmacología , ADN/química , Colorantes Fluorescentes/química , Ionóforos , Análisis Espectral , Agua/química
11.
J Funct Biomater ; 13(2)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35466219

RESUMEN

Lysosomal storage disorders (LSDs) are a set of metabolic diseases caused by mutations in genes that are in charge of the production of lysosomal enzymes, resulting in the buildup of non-degraded substrates and the consequent systemic damage that mainly involves the Central Nervous System (CNS). One of the most widely used and studied treatments is Enzyme Replacement Therapy, which is based on the administration of the recombinant deficient enzyme. This strategy has often proved fallacious due to the enzyme instability in body fluids and its inability to reach adequate levels in the CNS. In this work, we developed a system based on nanotechnology that allows a stable enzyme to be obtained by its covalent immobilization on nanoparticles (NPs) of polylactic acid, subsequently administered to a cellular model of LSDs, i.e., Sandhoff disease, caused by the absence or deficiency of the ß-d-N-acetyl-hexosaminidase A (HexA) enzyme. The HexA enzymes, loaded onto the polymeric NPs through an immobilization procedure that has already been investigated and validated, were found to be stable over time, maintain optimal kinetic parameters, be able to permeate the plasma membrane, hydrolyze HexA's natural substrate, and restore enzyme activity close to the levels of healthy cells. These results thus lay the foundation for testing the HexA-NPs in animal models of the disease and thus obtaining an efficient drug-delivery system.

12.
J Funct Biomater ; 12(2)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064736

RESUMEN

ß-d-N-acetyl-hexosaminidase (Hex, EC 3.2.1.52) is an acid hydrolase that catalyzes the cleavage of the ß-1,4 bond in N-acetyl-d-galactosamine (Gal-NAc) and N-acetyl-d-glucosamine (Glc-NAc) from the non-reducing end of oligosaccharides and glycoconjugates. It is widely expressed in both the prokaryotic and eukaryotic world, where it performs multiple and important functions. Hex has antifungal activity in plants, is capable of degrading many biological substrates, and can play an important role in the biomedical field for the treatment of Tay-Sachs and Sandhoff diseases. With the aim being able to obtain a device with a stable enzyme, a method of covalent immobilization on polylactic acid (PLA) films was developed for the A isoform of the ß-d-N-acetyl-hexosaminidase enzyme (HexA), produced in a recombinant way from Human Embryonic Kidney-293 (HEK-293) cells and suitably purified. An in-depth biochemical characterization of the immobilized enzyme was carried out, evaluating the optimal temperature, thermal stability, pH parameters, and Km value. Moreover, the stability of the enzymatic activity over time was assessed. The results obtained showed an improvement in terms of kinetic parameters and stability to heat for the enzyme following immobilization and the presence of HexA in two distinct immobilized forms, with an unexpected ability for one of them to maintain its functionality for a long period of time (over a year). The stability and functionality of the enzyme in its immobilized form are therefore extremely promising for potential biotechnological and biomedical applications.

13.
J Funct Biomater ; 10(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626094

RESUMEN

Polymer nanoparticles (NPs) represent one of the most innovative non-invasive approaches for drug delivery applications. NPs main objective is to convey the therapeutic molecule be they drugs, proteins, or nucleic acids directly into the target organ or tissue. Many polymers are used for the synthesis of NPs and among the currently most employed materials several biocompatible synthetic polymers, namely polylactic acid (PLA), poly lactic-co-glycolic acid (PLGA), and polyethylene glycol (PEG), can be cited. These molecules are made of simple monomers which are naturally present in the body and therefore easily excreted without being toxic. The present review addresses the different approaches that are most commonly adopted to synthetize biocompatible NPs to date, as well as the experimental strategies designed to load them with therapeutic agents. In fact, drugs may be internalized in the NPs or physically dispersed therein. In this paper the various types of biodegradable polymer NPs will be discussed with emphasis on their applications in drug delivery. Close attention will be devoted to the treatment of cancer, where both active and passive targeting is used to enhance efficacy and reduce systemic toxicity, and to diseases affecting the central nervous system, inasmuch as NPs can be modified to target specific cells or cross membrane barriers.

14.
Nanomaterials (Basel) ; 6(4)2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28335186

RESUMEN

The major challenge for stem cell translation regenerative medicine is the regeneration of damaged tissues by creating biological substitutes capable of recapitulating the missing function in the recipient host. Therefore, the current paradigm of tissue engineering strategies is the combination of a selected stem cell type, based on their capability to differentiate toward committed cell lineages, and a biomaterial, that, due to own characteristics (e.g., chemical, electric, mechanical property, nano-topography, and nanostructured molecular components), could serve as active scaffold to generate a bio-hybrid tissue/organ. Thus, effort has been made on the generation of in vitro tissue engineering modeling. Here, we present an in vitro model where human adipose stem cells isolated from lipoaspirate adipose tissue and breast adipose tissue, cultured on polymeric INTEGRA® Meshed Bilayer Wound Matrix (selected based on conventional clinical applications) are evaluated for their potential application for reconstructive surgery toward bone and adipose tissue. We demonstrated that human adipose stem cells isolated from lipoaspirate and breast tissue have similar stemness properties and are suitable for tissue engineering applications. Finally, the overall results highlighted lipoaspirate adipose tissue as a good source for the generation of adult adipose stem cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...